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INTRODUCTION 

The so-called renormalization group (RG) theory which has seen a 

vigorous development in the past few years has considerably strengthe- 

ned our understanding of phenomena near to phase transitions of statis 

tical mechanics, and it has also given some insight into the difficul- 

ties of relativistic quantum field theories. Maybe the main virtue 

of the RG theory has been to ask the right questions, namely to put 

the study of collective phenomena (that is the cooperative behaviour 

of many particles or modes) into a good perspective. The method con- 

sists of studying the behaviour of a physical system under a change 

of scale. The study of this question can be separated into two parts : 

Firstly, to ask in which way the microscopic physical laws trans- 

form under such a change of scale, and secondly, to ask why and how 

information about the system near a "critical" situation can be obtai- 

ned once the transformations of these microscopic laws are known. 

The second question has been essentially completely answered in 

the literature on critical phenomena while the first still poses some 

interesting problems. In these Lecture Notes we address ourselves ex- 

clusively to the second question by considering a model (the Hierar- 

chical Model) in which the first problem is completely answered by 

construction. This approach is then sufficiently modest to allow for a 

complete mathematical understanding of the following main problems of 

RG theory which are : The existence of non-trivial fixed points, their 

~-expansion, local flows and crossover phenomena and the physical in- 

formation which can be extracted from these things. 

These mathematical problems have been first solved by Bleher and 

Sinai and most of the proofs can be found in the references by these 

authors. The present Lecture Notes report these ideas in our reallzs- 



tion with proofs which differ sometimes essentially from those of 

Bleher and Sinai~he study of the c-expansion follows our own earlier 

work, while the existence proof given here is new and our crossover 

proofs are more detailed than those of Bleher and Sinai. 

These Lecture Notes are written in two parts which are distinct 

in style. In Part I we develop the different aspects of the renorma- 

lization group for the Hierarchical Model. These aspects are mostly 

given in the form of a more intuitive exposition followed by a precise 

mathematical statement. Those calculations which seem instructive are 

given in Part I but only the strategy of the proofs is outlined. Our 

approach to the subject is not along the conventional line because it 

is exclusively based on statistical mechanics, i.e. thermodynamic 

quantities appear as derived objects. It may be useful to read one of 

the review articles by Ma[1], Wilson-Kogut [2] or Fisher [3], to make 

contact with the more thermodynamic approach. 

Part II serves a different purpose : It is a complete mathematical 

description of all steps used in the arguments of Part I. Many of the 

results were shown before by Bleh~ and Sinai and are scattered in the 

literature. Our proofs are however new and many of them appear here 

for the first time. The language is that of mathematics and we address 

readers familiar with functional analysis. 
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PART I. HEURISTICS 

I. Probabilistic Formulation of the Problem 

The success of the RG method rests in part on the fact that sta- 

tements are only made about a very restricted number of observables 

of a system. Most of these observables describe the collective beha- 

viour of many degrees of freedom. Typical such observables describe 

the value of the mean spin of a system, or the fluctuations of this 

mean. 

Probability theory asks similar questions : Given random varia- 

bles sl, ..., Sn, with probability densities Pi(Si) = P(Si) , we 

may ask for the probability density of the sum (or the mean) of the 

s i . The answer is well known ; the probability density PN for 

S = s I + ... + s N is for independent random variables, 

Pn(s) = f ds I ... ds N ~(s i) ... ~(s~) ~(S-s i- ... - s~). 

(1 .1 )  

How does PN behave in the limit of large N ? The central limit 

theorem answers this question. 

* f d2 THEOREM 1.1.  Let  ~ = sp (s )  ds < ~ ,  

Then 
1 _ $2/2d2 1 

l i m  PN (N-~ (S + N # ) )  = (2w d2) -2 e 
N--~ co 

where the convergence is in the weak sense <i.e. 

= f ( s -  # ) 2 p ( s ) d s < ~ .  

f 1 
f (s )Pa  (N ~ (s + N ~ ) )  as 

(1.2) 

.! _s2/2d 2 
r / (2~ d2) 2 f ( s )  e ds 
d 

for f LI(dS) ) • 

• The notation A/BC means always A/(BC) 



The formulae (1.1), (1.2) exhibit many typical features of RG 

theory : indeed, a question is asked about a sum of variables(sum of 
i 

spins). This sum is rescaled (renormalized) through (s-N~)/N w . Most 

importantly the limit has a behaviour which is independent of the 

details of p, and the analogous feature in RG theory is called uni- 

versality. 

The situation described in (i.i), (1.2) corresponds to a free 

classical discrete spin system with continuous spin (a value in R), 

and this can be seen as follows. Choose 6 > 0 (the inverse temperatu- 
N 

re) and set H(s) = - (log p(s))/~ , HN(S 1 ..... SN) = 7 H( j=1 sj) 
H(sj) is the "energy" of the spin sj . The expectation for the fluc- 

N 
tuation of the sum of the spins S N = 7 sj is then given by 

j=1 

2 = 
XN < (S N _ < SN > )2 > / N , (1.3) 

where 

< f(sl, ..., s~) > 

Sdsi...$ds N e-~HN(Sl''''SN)f(sl ..... s N) 

-I~HN(S 1 ..... s N) 

(1.4) 

is the expectation of f in the Gibbs ensemble of statistical mechanics. 

Theorem 1.1. implies by inspection that as N ~ ~ , 

2 ~ 02 
~N (1 .5)  

Thus the fluctuations in any free spin system for which a single 
! 

spin has finite mean ~ and variance ~ behave asymptotically like N2s 

as a function of the number N of particles. 



In the course of the study of the model, we shall not only con- 

centrate on fixed points but also on the "flow" around them, i.e. on 

the approach to the fixed points. In fact, from a physical point of 

view, the latter problem is more important than the former, because 

it allows to make statements about large but finite systems. 

As in probability theory, one can ask which distributions ~ can 

occur as limits of initial distributions under some transformations. 

Thls~a deep problem, which is completely solved in the case of inde- 

pendent random variables. Also the domain of attraction (= universa- 

lity class) of each possible limit distribution (which are called the 

stable distributions in the mathematics literature) is known in this 

case ~ i.e. one can say which distributions"cenverge" to which limits. 

Some attempts to make progress in this difficult problem for dependent 

variables have been made by Sinai[8] and Bleherbut they have net yet 

gone beyond some beautiful but straightforward generalization of phe- 

nomena which will show up already in the study of the special case of 

the hierarchical model. However, the benefit of the probabillstlc 

description of the RG has certainly been to put the notion of univer- 

sality classes into precise language. 

Remarks on Section i : 

The probabilistic interpretation of the RG has been stressed especial- 

ly by Jona.Lasinio. Earlier allusions are made in passing in Bleher- 

Sinai, Baker. 
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2. The RG-Transformation for the Hierarchical Model 

We start this section by defining the model. The H!erarchical 

Model is a model of continuous spins on a one-dimensional lattice. 

If the lattice has N points, the spins will be called sl,...,s N. For 

every real function f and every N = 2 M we define the Hamiltonian 

of the system to be 

N 

~N,f = JCN + Z f(sj), 

j=l 
M-k k 

M 2 - 1  2 2 

~N Z 22k+ I s 
k=l j=0 1=i 

~N,f 

(2,1) 

(2.2) 

The constant c is real and 1 < c < 2 . 

We do not discuss at this point for which values of c and for which 

choices of f the Hamiltonian actually defines a thermodynamically 

stable system. Let us now describe the heuristics of Eq. (2.2). The 

Hamiltonian~ N is the sum of terms on "levels" k=l,... M. On each 

level k, the 2 M spins are grouped into disjoint blocks of 2 k spins 

each and the interaction for such a block is then 

2 k 
2 

(/ S k 
c 

22k+I j2 +l 
l=l 

This is usually visualized graphically as follows: 



 evei  > 

I I I i I I I I I I I I I i 

s I s 2 s 3 s 4 --- s14 

Figure i. The hierarchical structure of the interaction 

/ 
! 

s15 

Let us study the interaction between s i and sj, i+j. By the 

nature of the Hamiltonian, there will be a lowest level for which s i 

and s. lie in the same block, say the level k. Then the interaction 
J 

between s i and sN is -(c/4) k On the other hand, the fact that 

the lowest level is k implies li-Jl ~ I and ll-jl ~ 2k-i . It is 

thus reasonable to say that the interaction potential is about of the 

form li-Jl l°g2(c/4) but this is to be taken with a grain of salt 

because the model is not translation invariant. We thus see that the 

range of the interaction depends on c. 

Most often RG theory is done in varying dimension for short 

range interactions. In the case of the Hierarchical Model, the situa- 

tion is reversed in that the dimension is fixed and the range of the 

interaction is varied. While this is unusual, it has the advantage 
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of being more easily implementable from a mathematical point of view 

than the notion of fractional space dimension. 

Let us now assume f(s) is sufficiently increasing at infinity so 

/ N dsisikiexp(-~T,f (s))1~ exists. Then the model is defined that 
i=1 

for all finite volumes and we may discuss its partition function. In 

particular, we shall consider the probability density for the sum of 

spins, as in Section 1, at inverse temperature ~ > 0 . It is 

(B) ~ds I ...ds N 6( S- sl-...-sN)e -~1~N,f 

PN, f (S) = f d s  1 . . .  ds N e-(Sa~N'f (2 .3 )  

We shall now compare P2N, f and PE, g , using the explicit defini- 

tion (2.3) and the special form of the Hamiltonian (2.2). Observe that 

for k i> I, 

2 k 2 k- 1 

~ s k = ~ s k +s 
J2 +I J2 +2 i-i j2k+2 1 

i=i i=I 

Therefore, for N = 2 M, M > O, we find 

~2N (sl . . . .  s2~) 
M+I k- 1 2 M+l-k- 1 2 k- 1 ! 2 

c 

2 (Sj2k+2 1-1 j2k+2 1 )) 
k=l j=O l=l 

1 1 1 

= ~N( (sl+s 2) c~/2, (s3+s4) e2/2 ..... (S~N_ 1 + S2N) c2/2 ) 

2 M- i 

8 ~' (S2j+l + S2j+2)2 

j=O 
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Therefore we find, for any measurable function F~ 

F 2N 
j ds I ... dS2N F ( Z sj) 

j=i 
exp(-~2N, f (s 1 ..... S2N) ) 

j 2N N 
ds I ... dS2N w exp(-~f(sj)) w exp(6c(s2j_l + s2j)2/8 ) 

j:~ j=i 

2N 
1 1 

F ( Z sj) exp(-~N( (s I + s2) c~/2 ..... (s2N_1 + s2N)c~/2)) , 
j:l 

which, upon setting 

! 
tj : (s2j_l + s2j)c2/2 , uj : (S2j_l s2j ) /2, 

becomes 

(2/c½) N ~dtl dtN F(2c_½ N • .. Z tj) exp(-~N(t I .... tN) ) 
j=! 

Nf 
• ~ duj 
j:l 

I 1 

exp(-Bf (tic ~~ + uj) -6f (tjc -~ - uj) ) exp(5 tj2/2) 

f dt I ... dt N F(2c -½ 
N 

tj) exp(-~N,g (t I ..... tN) ), 
j~l 

where g is defined by 

-6g(t) 6t2/2 
e = e 

1 1 

-6 f( tC-~ + u) - B f( tc-~ - u) 

f (2/c ~) d~ e 

(2.4) 

The Equation (2.4) defines a transformation 

(6) 
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and upon imserting our calculations into (2.3) we find the important re- 

lation 

P2N,~ ~) ( S ) =(c½/2) ~(~) ro~ ((°½12) S) 

(2.4a) 

What have we now achieved ? We have related the probability densi- 

ties corresponding to two different numbers of spins (namely N and 2N) 
1 

through a change of scale (I goes to 2/c ~) and by a change of Hamilto- 

nian ~.,f--~3~.,jTp(8)(f) . Putting it slightly differently : A simul- 

taneous change of scale and of the Hamiltonian has no effect. The 

semigroup formed by these simultaneous transformations is called the 

renormalization group. The Hierarchical Model is an especially simple 

system insofar as the change of Hamiltonian concerns only the single 

spin distribution f . In the general framework of the renormalization 

group theory the transformation of the Hamiltonian involves other terms, 

too. The simple structure of the RG transformation for the Hierarchical 

Model will make a rigorous mathematical discussion possible, while the 

typical features of RG theory are preserved. 

What can these RG equations be used for ? First of all we recast 

them into a form which shows the similarities with the probabilistic 

aspects discussed in Section i. The quantity 

there satisfied the equation 

P2N(S) = f dT P~(S/2-T) 

PN which we considered 

F~(S/2+T), 

and the central limit theorem (Theorem 1.1) asserted (in the case of 

zero mean ~ = 0) 

lim P2M (2 M/2 S) ~ Gaussian . (2.5) 
M-, co 
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For N = 2 M we may also decompose the Hamiltonian as the following sum : 

3¢2N ' f ( s l  . . . .  ' S2N) = 3¢N, f ( s l  . . . . .  SN) + JfN, f (SN+I  . . . .  S2N) " 

M+ 1 - 2M- 2 2N 2 
1 -~c 2 (Z j=1 s j) 

Then by a sequence of transformations similar to those leading to 

(2.4) we get 

p (8) 
2N, f (S) = const, exp(~ c M+I 2 -2M-2 82/2) 

• f dT R (6) (8/2 - T) P(6) (S/2 + T) N,f N,f " 

In analogy with (2.5) we may consider 

p( l (12/c l M s) : Isl, 
2 M, f 2M, f 

which then satisfies 

(8) 
~K2M+ 1 ' f 

(S) = const, exp(~ $2/2) 

f (8) -~ (8) 
• du ~K M ( S c -2 + u) 3( M 

2 ,f 2 ,f 

1 

(s c -~ - u), (2.6) 

as compared to ~2M(S) = ~M (2M/2 S)~ in the case discussed in 

Section i which satisfies 

x2~+i (s) const, du M (S 2 -5 + u) ~K2M (S 2 -5 - u) . 

(2.7) 

The equation (2.6) is very similar to (2.7) which we discussed in 

Section I. But the very regular situation described in Equ. (2.5) may 
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now change drastically for one value of 6, called the inverse critical 

temperature. Then the fluctuations can be for example of order NW,~1, 

and S could tend to Gaussian distribution with variance N~/2~ ; 

2 T-I 2 
×N / N ~ O,  ~ / 1 . ( 2 . 8 )  

(In our case T = 2 - log2c ). 

Finally, there is the possibility that ~ ~ i and in addition 

SN/NT/2 does not tend to a Gaussian distribution, but to some other 

distribution ~ . This third case 

~ S2/2~ 2 

P~,f (s + ~ ~) ® (s) / . 2 ~ 2 .  -~ 

(2 .9 )  

i s  the most i n t e r e s t i n g  one from a p h y s i c a l  p o i n t  o f  v iew,  and the 

limit • is called a nontrivial critical spin distribution; or (the 

exponential of) a critical Hamiltonian. We prefer the first interpre- 

tation, and this is the reason for having exposed the RG in the pro- 

babilistic framework . (In mathematics ~ would correspond to the dis- 

tribution of a sum of dependent random variables.) We shall see that 

in the Hierarchical Model behaviour of the type Eq.(2.9) occurs. The 

purpose of these Lecture Notes is among others to study this generali- 

zed form of a central limit theorem for the Equation (2.6). But we view 

the limit itself as a fixed point of the transformation 

(6) ~ (6) defined by Equation (2 6) In fact, we shall not work 
N,r ~ N+1,f " " 

with (2.6), which we used to show the connection between the RG theory 

and the central limit theorem, but we shall rather concentrate on the 

tra~sformationJ~ 6) defined in (2.4), which also describes the scaling 

behaviour of the main object, namely p[6) which is defined in Eq. 
' N , f  ' 

(2.3). 
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These Lecture Notes are then a study of the transformationJ~(6p ) 

Two main methods for this study are used : 

M i) Look for a fixed point of the mapJ~(p 6) . Then under suitable 

conditions, the behaviour of the map in a neighborhood of the 

fixed point is completely described in terms of the tangent map 

at the fixed point.We shall see later that J~(p ~)- has fixed points 

which are not Gaussian, and these are the ones of special interest 

to us. 

M 2) Follow trajectories globally. This method is much less systematic 

than the first one and our results are maybe mathematically not 

so appealing. 

The above methods allow both for strong results about the system. 

From a physical point of view the resul~provided through M I and M 2 

are distinct. 

M I allows to determine the critical indices, i.e. to determine 

the behavlour of thermodynamic variables when the temperature reaches 

the critical temperature. M i corresponds to the so-called scaling limit. 

The fact that the result is independent of some class of functions f 

reflects what is called the universality character of the RG method. 

M 2 allows to prove, for suitable functions f in~N,f, and for 

suitable observables, the existence of the thermodynamic limit, i.e. 

the limit M ~ ~ in (2.6), at temperatures near, but not equal to a 

specific temperature, called the critical temperature. In addition it 

implies that the mean spin and the correlation length are finite when 

the temperature is not critical. Finally, the existence of a phase 

transition at the critical temperature follows. (Such results can of- 

ten be obtained by totally different arguments, but the RG treatment 
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seems particularly nice in the context of the Hierarchical Model. 

Furthermore the results on finite correlation length outside the cri- 

tical temperature are not known except for the Ising model). 

As we have seen above, the Hierarchical Model has the property 

that its RG transformation J~p (B) is a known transformation on the 

space of single spin distribution. This is not the case for a general 

model, but believed to be approximately true for large N. Whenever 

this should be the case for a transformation sufficiently similar to 

~(~)(e.g. convolution of several factors and a Gaussian factor) the 

ideas of these Lecture Notes could be carried over. However, the de- 

termination of a "correct" approximate RG transformation is a very 

hard problem for a general microscopic Ha~iltonian, and we do not 

pursue this question any further. 

In the next section, we shall discuss the existence of a nontri- 

vial fixed point of the transformationJ~p (~), and we shall come back 

to the application of Method M i in later sections. 



Remarks on Section 2 : 
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